

HEF-003-1501001

Seat No.

M. Phil. (Science / Maths) (Sem. I) Examination

December - 2017

Mathematics: CMT-10001

(Algebra) (New Course)

Faculty Code: 003

Subject Code: 1501001

Time: 3 Hours [Total Marks: 100

Instructions: (1) Answer all the questions.

(2) Each question carries 20 marks.

1 Answer any ten:

 $10 \times 2 = 20$

- (a) Give an example of a commutative ring which does not contain unit element.
- (b) Define unit in a ring and field.
- (c) Write down at least two facts of an ideal I in a ring R.
- (d) Let $f: R \to S$ be a ring homomorphism and $\ker f = \{r \in R / f(r) = 0\}$. Prove that f is $1-1 \Leftrightarrow \ker f = \{0\}$.
- (e) Define zero divisor of a ring R and write down at least five zero divisors of ring Z_{18} .
- (f) Define local ring and semilocal ring.
- (g) Define multiplicative closed set in a ring R. For a ring R with $1 \in R$, prove that $\left\{1, x, x^2, \dots \right\}$ is an mc set of R, where $x \in R$.
- (h) Define nilradical and Jacobson radical.
- (i) In standard notation prove that J(z) = (0).

- (j) Let M_1, M_2 be two distinct maximal ideals of a ring R. Prove that $M_1 + M_2 = R$.
- (k) Define \sqrt{I} , radical of an ideal I in R. Write down at least two properties of radical of ideals.
- (l) In standard notation prove that $(I_1 + I_2)^e = I_1^e + I_2^e$
- (m) Define Noetherian ring and Artinian ring.
- (n) Define an exact sequence of R-modules and a short exact sequence of R-modules.
- 2 Answer any four:

 $4 \times 5 = 20$

- (a) Let $\left\{P_{\alpha}\right\}_{\alpha\in\wedge}$ be a collection of prime ideals of a ring R. Prove that $R-\left(\bigcup_{\alpha\in\wedge}p_{\alpha}\right)$ is an mc set of R.
- (b) Let R be a ring. In standard notation prove that $J(R) = \{x \in R/1 rx \text{ is a unit in } R, \ \forall \ r \in R\}.$
- (c) Let I_1, I_2, \ldots, I_n be distinct ideals of R such that $I_j + I_k = R, \quad \forall, j, k, \in \{1, 2, \ldots, n\} \quad \text{and} \quad j \neq k, \text{ Prove}$

that
$$\prod_{j=1}^{n} I_j = \bigcap_{k=1}^{n} I_k.$$

- (d) Prove that $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$.
- (e) Prove that only Artinian integral domain is a field.
- (f) Prove that homomorphic image of a Noetherian R-module is also Noetherian.
- (g) In standard notation prove that $s^{-1}(\sqrt{I}) = \sqrt{s^{-1}I}$.

3 Answer any **one**:

 $1 \times 20 = 20$

- (a) Let R be a Noetherian ring. Prove that R[x] is also Noetherian.
- (b) State and prove (i) Nakayama's Lemma (ii) Chinese Remainder Theorem.
- (c) Let S be an mc subset of a ring R and $g: R \to T$ be a ring homomorphism. Let g(s) be a unit in $T, \forall s \in S$. Prove that \exists a ring homomorphism $h: S^{-1}R \to T \to M$ hof = g, where $f: R \to S^{-1}R$ and $f(r) = \frac{r}{1}$. Also prove uniqueness of h.

4 Answer any two:

 $2 \times 10 = 20$

- (a) Let $R = C_{\mathbb{R}}[0, 1]$. Prove that $M_{t_0} = \{ f \in \mathbb{R} / f(t_0) = 0 \}$ is a maximal ideal of R.
- (b) Let M_1, M_2 be R-submodules of an R-modules M. Prove that
 - (i) $M_1 + M_2$ is an R-submodule of M.
 - (ii) $\frac{M_1 + M_2}{M_1} \simeq \frac{M_2}{M_1 \cap M_2}$ as R-modules.
- (c) Define cofinitely generated R-module. Prove that an R-module M satisfies dcc iff $\frac{M}{N}$ is a cofinitely generated R-module, for any R-submodule N of M.
- (d) Let R be an Artinian ring. Prove that nil(R) is a nilpotent ideal of R.
- (e) Let R be a ring and S be an mc subset of R. Let $M' \xrightarrow{f} M \xrightarrow{g} M''$ be an exact sequence of R-modules. Prove that $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ is also an exact sequence of S^{-1} R-modules.

5 Answer any five:

 $5 \times 4 = 20$

- (1) Let p_1, p_2, \ldots, p_{10} be distinct primes. Prove that $\frac{\mathbb{Z}}{\prod_{i=1}^{10} p_i \mathbb{Z}}$ has no non-zero nilpotent element. Also write down two zero divisors of the ring $\frac{\mathbb{Z}}{\prod_{i=1}^{10} p_i \mathbb{Z}}.$
- (2) Prove that $\sqrt{\bigcap_{i=1}^{n} I_i} = \sqrt{\prod_{i=1}^{n} I_i} = \bigcap_{i=1}^{n} \sqrt{I_i}$.
- (3) Let $p_1, p_2, p_3, \ldots, p_n$ be prime ideals of a ring R and I be an ideal of R such that $I \subseteq \bigcup_{i=1}^n p_i$. Prove that $I \subseteq p_j$, for some $j \in \{1, 2, \ldots, n\}$.
- (4) In standard notation prove that (1) $I \subseteq I^{ec}$ and (2) $J^{ce} \subseteq J$, where I is an ideal of R, J is an ideal of T and $f: R \to T$ is a ring homomorphism.
- (5) Let $f: M \to N$ be an R-homomorphism of R-modules M, N. Prove that (1) $\{m \in M / f(m) = 0\}$ is an R-submodule of M and (2) $\{f(m) / m \in M\}$ is an R-submodule of N.
- (6) Let M be an R-module and N be an R-submodule of M. Let N and M/N both are f.g. R-modules. Prove that M is also a f.g. R-module.
- (7) Let R be a PID and P be a non-zero prime ideal of $R(P \neq (0))$. Prove that P is a maximal ideal of R.

4